

Caltrans Storm Water Monitoring Techniques

Prepared by: Edward F. Othmer Jr., P.E.

June 26, 2002

Acknowledgements

- Caltrans
- CSUS/UCD Storm Water Program
- Camp Dresser & Mckee
- Geomatrix
- Kinnetics Laboratory
- Larry Walker Associates
- Law Crandall
- Pat-Chem Laboratories
- RBF

Presentation Agenda

- Purpose of Monitoring
- Sample Representativeness
- Siting
- Planning and Logistics
- Equipment Selection and Installation
- Sampling and Analysis

Purpose of Monitoring

Why Monitor?

- Permit Requirements
- Total Maximum Daily Loads (TMDLs)
- California Toxics Rule (CTR)
- Litigation-driven Projects
- Research
 - Characterization Studies
 - **▶** BMP Pilot Studies

Fundamental goal of gathering additional and supporting information

Definition

- Selected/Collected from the Population
- Measures that are
 - Precise
 - Accurate
 - Reliable
 - Valid
- **▶ Defined Differently Depending on Agency/Organization**
 - **► Event Mean Concentration**
 - First-flush grab

Definition

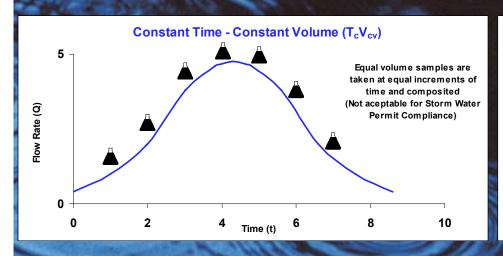
Must Consider:

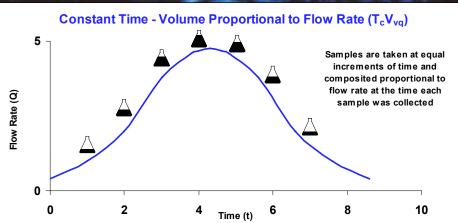
- General Characteristics of Aqueous System
- Flow Modes
 - Intermittent
 - Highly variable
 - Base and peak flows
 - Hydrology and hydraulics
- Variability of Constituent Concentrations
 - **◆ Time (e.g., first flush, whole event)**
 - Cross-section (e.g., turbulent/laminar flow, velocity, density, lateral dispersion, stratification)

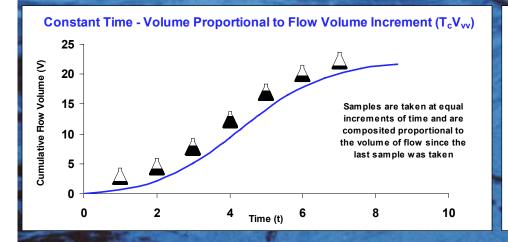
So that accurate conclusions or inferences can be made about the population

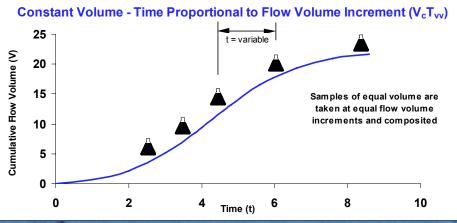
Sample Types

Grab Sample:


A discrete individual sample taken within a short period of time (usually less than 15 minutes)


Composite Sample: Sample comprised of a series of individual aliquots that have been combined to reflect the event mean concentration (EMC) during the sampling period





Composite Sample

Siting Typical Caltrans Criteria Representativeness **Personnel Safety** Site Access Equipment Security **▶ Flow Measurement Capability** Electrical Power and Telephone **▶ Non-Caltrans Sources**

Siting

Common Challenges

- Unsafe access to site
- Flow does not concentrate or can not be rated
- Commingling with other runoff sources
- Lack of space to house equipment
- Sites are relatively small and have small t_c resulting in
 - **low runoff volume**
 - short periods of runoff

Siting

Common Challenges

- Freeway characteristics and bad driving habits affect monitoring
 - call box locations with soft shoulders become depressed
 - gopher holes cause flow bypass
 - trees shadow solar panels and rain gauges
 - drivers travel on shoulders
- Future construction precludes longterm data collection
- Monitored construction sites are dynamic
- Snowfall regions complicate site access and monitoring

Siting Solutions Develop project-specific siting criteria Use existing data when available • as-builts photographs/video local knowledge **GIS**

Incomplete Plan for Design

Siting

- Plan on spending time in the field
- Check for accidents and crime with local agencies
- Check to see if construction is planned within the watershed
- Coordinate permitting early on
- ▲ Look for sites that are greater than 1 acre
- Look for sites that can be accessed away from traveled way
- **▲ Look for sites where flow concentrates**
- Check watershed for offsite runoff contribution

Siting

- Look for multiple monitoring locations at construction sites
- Avoid conveyances with steep slopes (>5%)
- Avoid sites with gopher activity
- Avoid sites near call boxes
- Avoid sites where there is evidence of vehicles travelling off pavement
- Avoid sites near trees

Planning and Logistics

- Trained Staff
- SAP
- Laboratories
- Sample Bottles and Tubing

- Weather Tracking
- **♦ Storm Selection Criteria**
- Equipment Programming

It pays to plan!!

- Conduct field training prior to each season
- Maintain a core group of team leaders
- Have a large staff pool available
- Follow-up any missed events with team

Trained Staff

Sampling and Analysis Plan

- Project Description, Organization, and Responsibilities
- Monitoring Site(s)
- Analytical Constituents
- Data Quality Objectives (DQOs)
- Field Equipment Maintenance
- Monitoring Preparation and Logistics
- Sample Collection, Preservation, and Delivery (40 CFR 122.21/122.26)

- Quality Assurance/Quality Control
- Laboratory Sample Preparation and Analytical Methods (40 CFR 136)
- Data Management and Reporting Procedures
- Appendices:
 - Clean Sampling Techniques and Equipment Cleaning Protocols
 - Health and Safety Plan (HSP)

A Sampling and Analysis Plan is a must!!

Planning and Logistics Laboratories Inform lab of QA/QC requirements (e.g., DLs) Establish reporting requirements and formats early on Look for labs that are available 24/7 Look for full-service lab bottle and tubing cleaning customized coolers compositing • QA/QC

Sample Bottles and Tubing

- Must be chemical resistant
- Material won't contaminate sample
- Teflon and borosilicate glass are acceptable
- Decontamination performed by lab
- Blanking required to confirm
 equipment is "clean" before use
- Extra bottles for back-to-back events
- Custom coolers to prevent bottle breakage

Weather Tracking

- Unlikely Storm Event
- **Marginal Storm Event**
- Likely Storm Event
- WILD CARD

Planning and Logistics Storm Selection Criteria Tasks Monitor Weather Reports Monitor weather reports every 24 hours Weekly Verify operation of monitoring equipment Alert analytical laboratory and Caltrans · Alert field teams of action level change **Pre-Alert** · Verify availability of field teams **Target Storm Expected < 72 Hours** Tasks · Monitor weather reports every 6 hours or more frequently as storm approaches Alert field teams of action level change **Alert** and probable time of storm **Target Storm Expected < 24 Hours** Prepare monitoring equipment for sampling and/or observations Forecast - Unlikely Forecast - Marginal Forecast - Likely less than 0.25" and less the 50% probability 0.25" or greater and 75-100% probability 0.25" or greater and 50-75% probability Caltrans NO GO Decision: ""GO" or "NO GO" for Storm **Tasks Post-Storm Tasks Tasks** Monitor weather reports as needed Demobilize field teams · Demobilize field team · Split composite samples for field duplicates Mobilize field teams Prepare for next storm Label and log samples on chain-of-custody form • Ensure timely delivery to analytical laboratory/ship samples **Storm Monitoring** Complete field notes Prepare for next storm - inventory/clean/organize/ replace equipment as necessary Analyze samples

Equipment Programming

Sampler pacing based on:

- Predicted rainfall
- Tributary area
- Runoff coefficient
- Number of aliquots
- Required sample volume

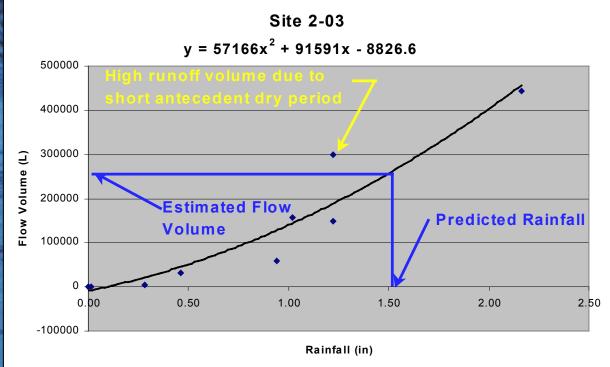
Equipment Programming

Challenges:

- Predicted rainfall not accurate
- Tributary area not precisely known
 - inaccurate as-builts
 - sub-basin crests not determined
- Runoff coefficient "C" varies
 - storm size
 - storm duration
 - rainfall intensity
 - antecedent dry period
 - published values of C based on 5- to 10-year storm events
 - infiltration/ponding through pavement cracks, seems, depressions
- Small watersheds
 - short runoff periods
 - limited runoff volume
- **Sample aliquot collection rate (typically 2 to 4 minutes)**

Equipment Programming

- Don't rely on one forecast...use many sources
- Program equipment based on last possible QPF
- Survey the watershed
- Verify tributary area during rainfall by observing flow patterns/paths
- Track runoff volume per depth of rainfall
- Visually evaluate and integrate antecedent conditions into runoff volume estimates
- Target fewer sample aliquots (i.e., increase sampler pacing and aliquot volume) for
 - **small** watersheds
 - short duration events
 - **small storms**



Equipment Programming

- Target maximum number of aliquots to fill sample bottle
- Recognize that a shake-out period during initial storms may be required
- Mobilize field teams to change out bottles if rain or runoff exceeds forecasts

	a district of
Herbert S. Miles Rest Area	2-03
Rain (in)	Flow (L)
0.94	58822
0.46	31198
0.00	0
0.28	5549
0.01	0
0.00	0
1.22	149382
2.16	444225
1.22	298682
1.02	157888
QPF (in)	1.5
Forecasted Volume (L)	257183
Volume-to-Sample (L)	7144

Automated Sample Collection

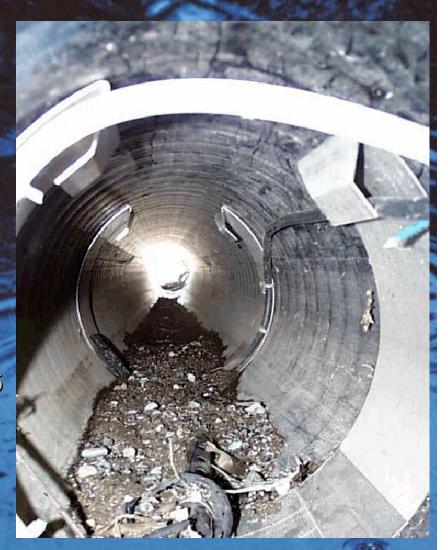
- Technique for "unattended" sampling
- Requires:
 - intensive planning
 - careful monitoring point selection
 - appropriate equipment selection
 - **♦ QA/QC**
- Consider discharge homogeneity:
 - **b** physical
 - **6** chemical
 - biological

Don't be fooled...auto samplers are not fully automatic!!

Automated Sample Collection

Challenges:

- Faulty electronic and physical components
- Limited suction lift
- Improper installation and programming
- Improper sample intake positioning
- Limited/constrained intake and transport velocities
- Sample volume deviations
- Unable to sample low flows



Automated Sample Collection

Challenges:

- Intake blockage and line plugging
- Tubing distortion and kinks
- Tubing wear
- Sampling stagnant water
- Tubing damage by rodents
- Insufficient number of aliquots
- Insufficient % storm capture
- Sampler can't keep up with pacing

Automated Sample Collection

- Follow manufacturer's instructions
- Work closely with manufacturer
- Double-check connections
- Check for no air bubbles in tubing
- Locate intake away from high sediment areas
- Maintain an upward sweep of sampling tube from intake
- Encase tubing in conduit
- Ideally use auto samplers where discharge velocity equals sample intake velocity

Automated Sample Collection

- Remove sediment from around intake before storm events
- Locate intake downstream of confluence in well mixed zones
- Position intake in straight line of conveyance
- Position intake at point of maximum turbulence
- Use intakes with orifices large enough to draw in largest particle
- Use intakes with orifices small enough to assure adequate transport velocity

Automated Sample Collection

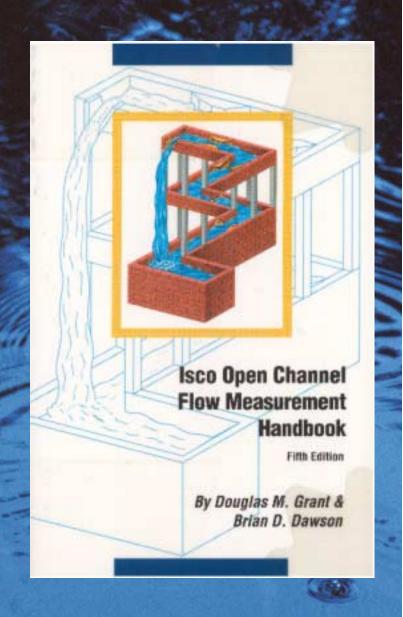
- Direct intake into flow ± 20 degrees
- Use low-flow intakes for shallow flows
- Minimize cross-section exposure of intake to limit conveyance obstruction

- Minimize vertical distance from sampler and intake (20ft max)
- Minimize tubing length
- Calibrate sample volume
- Carefully estimate expected storm volume

Flow Measurement

- Necessary to collect representative flow-weighted composite sample
- Used to calculate mass loading
- Used to assess rainfall/runoff relationship
- Primary device accuracy dependent on:
 - selection of device
 - care of fabrication and installation
 - calibration and analysis
 - proper operation with adequate inspection and maintenance
- **★ ± 5% accuracy under ideal conditions**
- **★ 10% accuracy typically obtained in field when properly constructed calibrated and maintained**

Flow Measurement


Challenges:

- Low flows (depth and velocity)
- Flow meter probe covered with sediment
- Flow meter probe covered with ice
- Uniform flow not established in existing conveyance
- Corrugated metal pipe ridging causes turbulence
- Poor mass balance between influent and effluent BMP
 Pilot monitoring stations
- Some primary devices cause excessive upstream ponding
- Backwater condition exists at monitoring location

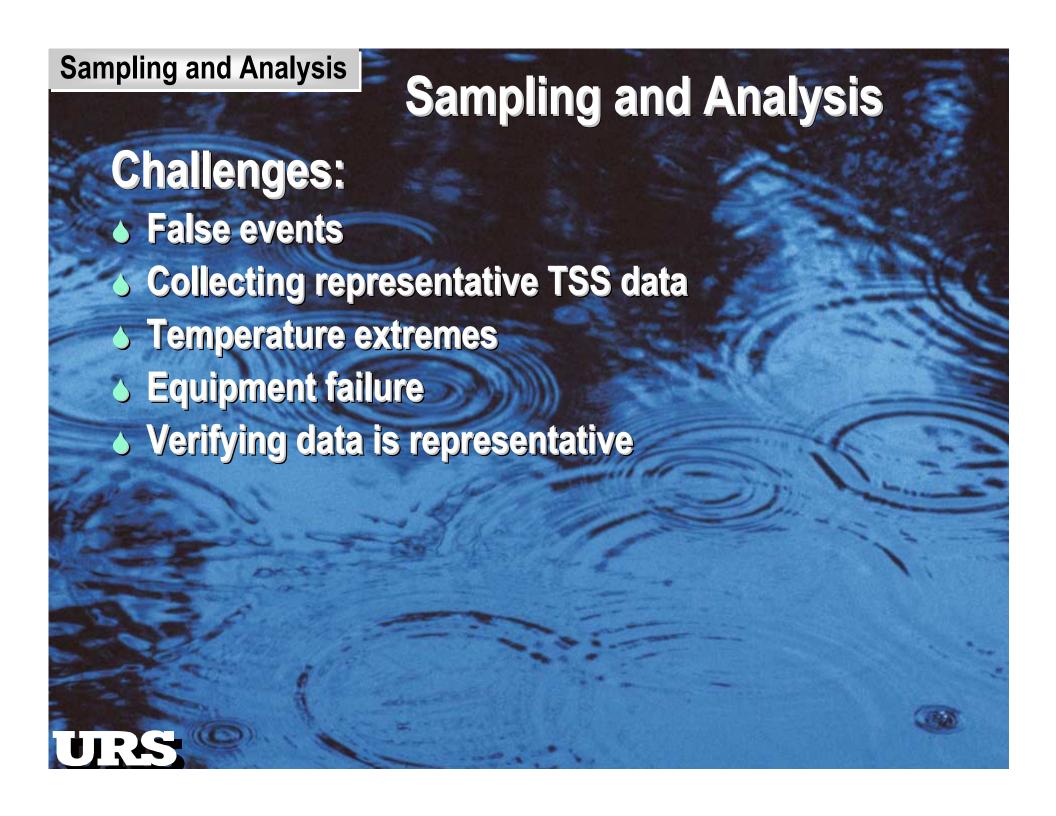
Flow Measurement

- Device Selection
 - Use primary devices where possible
 - Use AV bubblers when backwater conditions exist
 - Select device that is accurate over range of expected flows
 - Select device that can be installed in the conveyance
 - Select device that is appropriate for location (e.g., power, submersible, etc.)
 - Work closely with equipment manufacturer
 - Use similar device upstream and downstream of BMP Pilots
 - Avoid flumes that cause ponding water upstream
 - Purchase pre-fabricated primary devices

Flow Measurement

- Installation:
 - Avoid sites with sediment deposits
 - Install at location where flow is laminar
 - Install flumes to allow free-flowing water
 - Fix leaks or bypasses
 - Squarely install and level primary devices

 - **▶** Calibrate



Flow Measurement

- Field Evaluation:
 - Look for excessive flows submerging device
 - Look for flows outside of accuracy range
 - Repair leaks and/or bypasses
 - Minimize turbulence
 - Remove any solids accumulation and obstructions
 - Check that correct factor/formula is used to convert head to flow rate
 - Visually check head measurements and compare with flow meter readings; level adjust if necessary

Sampling and Analysis False Events Solutions: Carefully evaluate site hydrology Develop mobilization criteria Use multiple forecast sources Wait until last possible moment to make mobilization decision Budget for false events

Sampling and Analysis TSS Samples Solutions: Sample from well mixed zone **Avoid locations that can block intake** Properly position sample intake If possible, capture all runoff and sediment (mass-balance approach) Analyze sample using **Suspended Sediment Concentration (SSC)** analysis ASTM D 3977-97

Sampling and Analysis

Temperature Extremes

Solutions:

- Use metal housings and place in open areas in cold environments
- Insulate enclosures and tubing
- Maintain an upward sweep of sampling tube from intake
- Remove icy buildup around probes and strainer prior

to each event using warm water

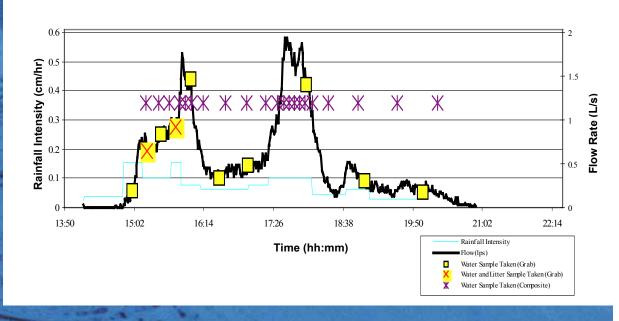
- Use heated rain gauges
- Obtain rainfall data from NWS or affiliate
- Forecast temperature so that snowmelt can be predicted
- Mark equipment for snow maintenance crews
- Remove equipment from enclosures during summer months

Sampling and Analysis

Equipment Failure

Solutions:

- Perform pre-storm maintenance and calibration
- Be onsite during events
- Have backup batteries on hand
- Perform real-time trouble-shooting
- Use 24-hour technical support services
- Document and inform staff of lessonslearned
- Segregate faulty equipment
- Purchase backup equipment


Expect to have equipment failure...electronics and water don't mix!!

Sampling and Analysis

Verify Data Representativeness

- Evaluate storm total
- Evaluate number of collected aliquots
- Evaluate sample history
- **Evaluate % storm capture**
- Review event hydrograph and hyetograph
- Collect QC samples
 - Field Duplicates
 - **♦ Laboratory Replicates**
 - MS/MSDs
 - Blanks
- Adhere to holding times
- Validate data

